
Ultimate Java Quick Reference - CodeWithHarry

1. // [comment]

Single line comment.

2. /* [comment] */

Multi line comment.

3. public

This can be imported

publically.

4. import [object].*

Imports everything in

object.

5. static

Going to be shared by every

[object].

6. final

Cannot be changed;

common to be defined with

all uppercase.

7. double

Integer with numbers that

can have decimals.

8. ;

Put after every command.

9. String

Just a string of characters.

10. Private

Can only be changed by a

method.

11. int

Can store numbers from 2^-

31 to 2^31.

12. fields are attributes

13. boolean

Can have true or false as

the value.

14. { }

These are used to start and

end a function, class, etc.

15. byte

These can store from -127 -

128.

16. long

Can store numbers from

2^127 to 2^-127.

17. char

Just lets you put in one

chracter.

18. double

64-bit number with

decimals.

19. float

32-bit number with

decimals.

20. protected

Can only be accessed by

other code in the package.

21. Scanner

This lets you get user input.

22. new [object

constructor]

This will let you create a

new object.

23. System.in

This lets you get data from

the keyboard.

24. public [class]()

This will be the constructor,

you use it to create new

objects.

25. super()

This will create the

superclass (the class it's

inheriting).

Ultimate Java Quick Reference - CodeWithHarry

26. extends [class]

Makes the object a subclass

of [object], [object] must be

a superclass.

27. ++

Will increment the amount.

28. --

Will decrement the amount.

29. += [amount]

Increment by [amount]

30. -= [amount]

Decrement by [amount]

31. *= [amount]

Multiply by [amount]

32. /= [amount]

Divide by [amount]

33.

System.out.println([text])

Will print something to the

output console.

34. +

Can be used for

concatenation. (ex. "6" +

[var_here])

35. public static void

main(String[] args)

This is your main function

and your project will start in

here.

36. System.out.print([text])

This prints stuff but there is

no line break. (/n)

37. \n

Called a line break; will print

a new line.

38. \t

This will print a tab.

39. if ([condition])

This will make it so if

[condition] is true then it'll

keep going.

40. &&

This means and.

41. !

This means not.

42. ||

This means or.

43. ==

This means equal to.

44. <

This means less than.

45. >

This means greater than.

46. >=

This means greater than or

equal to.

47.

[inputVarHere].hasNextLine

()

This will return if there is a

next line in the input.

48. this

Refer to the class that you

are in.

49. [caller].next[datatype]()

This will get the [datatype]

that you somehow

inputted.

50. Create getters and

setters

This will create the get

methods and set methods

for every checked variable.

51.

[caller].hasNext[datatype]()

Ultimate Java Quick Reference - CodeWithHarry

This will return if it has the

correct datatype within the

input.

52. overloading

If you have different

parameters you can call

them whatever way you

want.

53. parameters

These are the inputs of your

function.

54. ([datatype])[variable]

This will convert [variable]

into [datatype]. Also known

as casting.

55. Math.random()

Generate an extremely

percise string of numbers

between 0 and 1.

56. Primitives

Just the basic data types

which are not objects.

57. [x].toString()

Will convert [x] into a string.

58.

[number].parse[numbertyp

e]([string])

This will parse [number]

into the [numbertype] with

[string].

59. ^

Return true if there is one

true and one false.

60. !=

Not equal too. (NEQ)

61. ([condition]) ? [amount]

: [var]

This will be like a shortcut

way to an if statement.

62. switch([variable])

This will do stuff with

specific cases. (e.g.

switch(hi){ case 2: (do

stuff)})

63. case [value]:

This will do stuff if the case

is the case.

64. break

Put that when you want to

leave the loop/switch;

should be at end of case.

65. default [value]:

This will do stuff if none of

the cases in the switch

statement was made.

66. for ([number];

[condition]; [operation])

This will start at [number]

and then do [operation]

until [condition] is met.

67. continue

This will just go back to the

enclosing loop before

reaching other code.

68. while ([condition])

This will basically do

something while [condition]

is true.

69. void

This means no return type.

70. return

This will return something

when you call it to where it

was called from .

71. do { } while ([condition])

Guarantees it will execute

once even if [condition]

isn't met.

72. printf("%[type] stuff

here bah bla", [variable

here])

This will let you use

[variable here] with %s

being where.

Ultimate Java Quick Reference - CodeWithHarry

73. System.out.printf([text])

Another way to print? //

didn't quite get but ok then

74. [type] [returntype]

[name]([parameters]) {

This is a way to create a

method.

75. [type][[indexes]]

This will create an array

with [indexes] amount of

indexes; default infinite.

76. int[] something = new

int[20];

This will just make an array

of ints with 20 ints in it.

77. for ([object]

[nameOfObject] :

[arrayOfObject]) {

This will iterate through all

of the arrayOfObject with

object in use incrementing

by 1 until done.

78. [object][[1]][[2]][[3]]

[name] = {[value] [value]

[value] \n [value] [value]

[value]}

[1] is how many down in

array, [2] how many accross

in array, [3] how many

groups

79. .length

This will get how long

something is, text, amount

of indexes in array, etc.

80. Arrays.copy0f([array],

indexes);

This will copy the array and

how many indexes into

another array.

81. Arrays.toString([array])

Convert the whole array

into one huge string.

82.

Arrays.binarySearch([array],

[object])

This will search for [object]

in [array].

